1. Introduction

Aquatic hyphomycetes are an important microbial assemblage in litter decomposition in
freshwaters (GESSNER and CHAUVET, 1994; BALDY et al., 1995; HIEBER and GESSNER, 2002;
PASCOAL et al., 2005). The nutrient concentration in water has been shown to affect fungal
activity, particularly sporulation (SUBERKROPP, 1998; FERREIRA et al., 2006a) and oxygen
consumption (STELZER et al., 2003; GULIS et al., 2004). High fungal activity often facilitates
faster rates of litter decomposition as a large amount of initial mass is converted into fun-
gal mycelium and conidia (N1YOGI et al., 2003; GuLis and SUBERKROPP, 2003; PASCOAL
et al., 2005; FERREIRA ef al., 2006a). Stimulation of fungal activity is thought to be higher
in low quality (low nutrients, high lignin) substrates (STELZER et al., 2003; GULIS et al. 2004;
but see FERREIRA ef al., 2006a).

Wood, being a highly recalcitrant substrate, is usually colonized by fewer species of
aquatic hyphomycetes and has lower microbial activity (sporulation, biomass built up, O,
consumption) when compared with leaves (SIMON and BENFIELD, 2001; STELZER et al., 2003;
FERREIRA et al., 2006a). This lower conditioning of wood can be overcome in the presence
of an increase in the concentration of dissolved nutrients. In this case, wood can be an impor-
tant resource for aquatic food webs when leaves are not available due to their faster decom-
position rates or because of seasonal constrains.

The objective of this study was to assess the effect of two contrasting nitrogen levels
(ambient and enriched) on the decomposition rates of balsa wood and on the activity (sporu-
lation and oxygen consumption rates) of the associated aquatic hyphomycete communities,
using laboratory microcosms. In a broad context, the experiment is expected to elucidate
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relationships between nutrient levels in the environment and the functional process of litter
decomposition. We expect fungal activity to be stimulated in the microcosms with the high-
est nutrient concentration, which could be reflected in higher mass loss.

2. Methods
2.1. Conditioning of Balsa Wood in Stream and Incubation in Microcosms

Balsa (Ochroma pyramidale (CAv. ex Lam.) URrB.) veneers (100 x 10 x 0.1 cm) were bought from a
local supplier and cut into 1.1 cm? squares. Each sample was composed of 10 squares (0.1688-0.3547 g)
that were placed in fine mesh bags (3 X3 cm; 0.5 mm mesh) and incubated in Margaraca stream
from April 14 to June 6, 2006. Margaraca stream is a 1* order, circumneutral, SRP rich, N limited
(NO;-N =104 £40 ug L™! and soluble reactive phosphorus (SRP) =104+ 34 ug L, average + SD)
stream running through a native deciduous forest (Margaraga Forest, Central Portugal, 40°13" N, 7°56
W). For more information about the stream see ABELHO and GRACA (1998) and FERREIRA et al. (2006a).

After 52 days of incubation, the bags containing the veneers (116 in total) were retrieved from the
stream, placed in zip lock bags and transported in an ice chest to the laboratory, where they were gen-
tly rinsed with distilled water. Half the samples (n = 58) were autoclaved at 120 °C for 15 min. Ten of
these samples were oven dried at 105 °C for 24 h, weighed, ashed at 550 °C for 6 h and reweighed to
calculate initial air-dry mass to conditioned ash free dry mass (AFDM) conversion factor. The remain-
ing 48 autoclaved samples were split into 2 groups and placed in individual 100 mL Erlenmeyer flasks
with 25 mL of stream water (ambient N treatment; 0.16 mg N L") or 25 mL of N amended stream water
(enriched N treatment; 0.82 mg N L'; see below). These samples served as controls for fungal activi-
ty in the ambient and enriched N microcosms. The remaining non-autoclaved samples (n = 58) were
distributed as above and were used to determine the effect of two contrasting N concentrations in fun-
gal activity. Microcosms were incubated in shakers (100 rpm) at 15 °C for 4—24 days. The stream water
used in microcosms was collected at the same time as the balsa samples, transported to the laboratory,
and filtered using glass fiber filters (Millipore APFF). Half of the water untreated (ambient N treat-
ment), and half had its N concentration amended with NaNOj so that it would be approx 5x higher than
ambient (enriched N treatment). Chemical composition of water was determined from filtered samples
by ion chromatography (Dionex DX-120, Sunnyvale, CA); SRP was determined by the ascorbic acid
method (APHA, 1995; Table 1).

The solutions in the microcosms were replaced every 4 days, and 4 replicate microcosms of each of
the 4 treatments (control + ambient N, control + enriched N, conditioned + ambient N and condi-
tioned + enriched N) were sacrificed for measurements (see below). Fungal activity was determined only
from conditioned + ambient N and conditioned + enriched N treatments while mass loss was determined
from all 4 treatments.

Table 1. Water chemistry in microcosms (mean  1SD; n = 3).

Ambient Enriched
NO;-N (mg L™ 0.16 £0.03 0.82 +£0.08
NH,-N (mg L™ 0.05 £ 0.00 0.03+£0.03
SRP (mg L) 0.07 £0.01 0.07 £0.03
Na (mg L™ 7.74+0.19 9.21+£0.56
Mg (mg L™ 3.64 £0.03 3.78+0.23
Ca (mg L™) 3.77+1.13 5.69+4.75
K (mg L™ 0.51+£0.25 0.45+0.15
Cl (mg L) 9.12+7.42 5.27+0.82

SO, (mg L) 6.25 £2.38 4.85+0.57
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2.2. Aquatic Hyphomycete Sporulation and Microbial Oxygen Consumption

The conidia suspensions of conditioned + ambient N and conditioned + enriched N treatments were
decanted into 50 mL centrifuge tubes, and conidia were fixed with 2 mL of 37% formalin to be later
counted and identified. When preparing slides for conidia identification, 100 uL of Triton X-100 solu-
tion (0.5%) were added to the suspension to ensure a uniform distribution of conidia, stirred and an
aliquot (5—10 mL) of the suspension was filtered (Millipore SMWP, 5 um pore size). Filters were
stained with cotton blue in lactic acid (0.05%), and spores were identified and counted with a compound
microscope at 200X. Values were expressed as number of conidia microcosm™.

The 10 balsa squares of conditioned + ambient N and conditioned + enriched N treatments sacrificed
every 4 days were used to determine microbial oxygen consumption rates (flow through system; ABEL-
HO and GRACA, 2000). The flow-through system was set at 15 °C and consisted of a peristaltic pump
with adjustable flow provided with Watson-Marlow orange/green tubes. One end of each tube was con-
nected to a respiration chamber (8 ml glass syringes, covered with aluminum foil) with the 10 balsa
squares, and the other end entered a reservoir containing ambient or enriched N stream water 100%
oxygenated. Oxygen saturation of water was achieved by pumping air through air-stones. Measurements
of oxygen concentrations in water were made only after the chambers’ volume was totally replaced. The
water flowing through the chambers was collected with a 1 mL syringe and injected into a 0.1 mL
micro-chamber adapted to an oxygen electrode (Strathkelvin Inst. 781, Glasgow, Scotland) and read-
ings were made after 30 seconds. After 3 measurements the flow was determined with 5 mL calibrated
glass vials for 20 minutes. Oxygen consumptions were expressed as mg O, g AFDM h™.

2.3. Decomposition

After the oxygen consumption trial, balsa squares of conditioned +ambient N and condi-
tioned + enriched N treatments were oven dried at 105 °C for 24 h, weighed, ashed at 550 °C for 6 h
and reweighed to calculate AFDM remaining. The same procedure was used for balsa squares from con-
trol + ambient N and control 1 + enriched N treatments.

2.4. Data Analysis

Differences in remaining AFDM by day 24 between treatments were assessed by 2-way ANOVA
with N concentration (ambient and enriched) and balsa type (control and conditioned) as categorical
variables.

Microbial oxygen consumption, aquatic hyphomycete sporulation rates, species richness, and % con-
tribution by selected fungal species to the total conidial production were compared between ambient
and enriched N microcosms by 2-way ANOVA (N concentration and time as categorical variables).
Cumulative conidial production at each sampling date was calculated by summing values of daily pro-
duction at each sampling. Comparison of cumulative conidial production between treatments was done
by ANCOVA (N concentration as categorical variable and time as continuous variable). Simpson’s
index (D), which indicates the probability that two individuals chosen at random and independently will
be found to belong to the same species (WASHINGTON, 1984), was calculated from conidial abundances
(PRIMER 6, Primer-E Ltd, Plymouth, UK; CLARKE and GORLEY, 2001), and comparison between N
treatments was done by 2-way ANOVA.

Data was transformed when necessary to achieve normality (ZAR, 1999) and analyses were performed
with STATISTICA 6 software (StatSoft, Inc., Tulsa, OK, USA) unless otherwise indicated.

3. Results
3.1. Decomposition

After 52 days in the stream, balsa squares lost ca. 40% of their initial mass. The remain-
ing mass was considered the initial mass for the experiment in microcosms. After 24 days


Marko
Rectangle

Marko
Rectangle


110 -

g 100 -
£ |
[=
£
£ 90 T
)
=
z
< 804
70
Control Conditioned Control Conditioned
Ambient Enriched

Figure 1. Remaining mass (average + 1SE) of control and conditioned balsa squares after 24d in
ambient and enriched N microcosms.

in microcosms, conditioned balsa squares lost 16% of their initial mass in both N treatments,
while control balsa squares lost from 2% (ambient N) to 12% (enriched N) of their initial
mass (Fig. 1). By day 24 no significant difference in remaining mass of balsa squares was
found between N concentrations (2-way ANOVA, P =0.807) or balsa types (2-way
ANOVA, P=0.218).

3.2. Microbial Oxygen Consumption

Oxygen consumption by microbes associated with balsa squares peaked by day 12 in the
laboratory in enriched N microcosms (0.26 mg O, g AFDM h™'), while it decreased over
time in ambient N microcosms (0.27 to 0.18 mg O, g”! AFDM h™! from d4 to d24) (Fig. 2).
However, no significant differences in oxygen consumption rates between N concentrations
were found (2-way ANOVA, P =0.549).
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Figure 2. Microbial oxygen consumption (average + 1SE) in conditioned balsa squares incubated in
ambient and enriched N microcosms.
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3.3. Aquatic Hyphomycete Sporulation

Conidial production increased through time and was always higher in enriched N micro-
cosms (32902 vs. 20380 conidia microcosm™ by d24; 2-way ANOVA, P =0.001; Fig. 3a).
Cumulative conidial production was up to 2 times higher in enriched than in ambient N
microcosms (108591 vs. 59260 conidia by d24; ANCOVA, P = 0.008; Fig. 3b).
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Figure 3. (a) Number of conidia (average + 1SE), (b) cumulative conidial production (average + 1SE)
and (c) species richness (average = 1SE) of aquatic hyphomycetes associated with conditioned balsa
squares incubated in ambient and enriched N microcosms.
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Table 2. Mean relative abundances (%, over all sampling dates) of aquatic hyphomycete
conidia in balsa squares incubated in ambient and enriched N microcosms.

Ambient Enriched
Days in water 4 8 12 16 20 24 4 8 12 16 20 24
Alatospora 8.2 10.6 13.5 09 0.7 1.8 7.1 1.0 20 51 0.6
acuminata
Anguillospora 75.6 748 742 96.1 96.3 95.0 854 748 94.1 948 920 94.2
crassa
Clavariopsis 31 87 83 34 24 27 57 141 35 08 2.1 5.1
aquatica
Tetrachaetum 0.2 0.5 0.7
elegans
Tricladium 1.9 13 0.6 0.1 1.0 1.2 1.1 02 09 06
chaetocladium
Tricladium 11.0 46 29 06 03 59 29 1.1 15 03 02
splendens

Simpson’s index, D 0.8 08 08 04 06 0.5 07 08 06 06 07 06

There were 6 species of aquatic hyphomycetes sporulating in balsa squares in microcosms,
but Anguillospora crassa dominated the fungal communities across all sampling dates in
both N concentration microcosms (75-96% contribution to the total conidial production;
Table 2). This was reflected in the relatively high Simpson’s index values (D =0.5-0.8;
Table 2). The number of species sporulating in balsa squares was similar between ambient
and enriched N microcosms (2-way ANOVA, P =0.659) and it decreased through time
(Fig. 3c). The percentage contribution of each species to the total conidial production was
similar at both N concentrations (2-way ANOVA, P =0.103-0.696). This resulted in simi-
lar Simpson’s index values between N treatments (2-way ANOVA, P =0.701).

4. Discussion

Given the low nutrient quality of balsa wood (FERREIRA et al., 2006a), it was expected
that an increase in dissolved nitrogen would lead to an increase in mass loss and associated
microbial activity (DIEz et al., 2002; GuLIS et al., 2004). This seemed particularly likely
since dissolved phosphorus was present in high quantity, and previous field experiments had
shown that nitrogen was the limiting nutrient for fungal activity associated with this woody
substrate (FERREIRA et al., 2006a). However, decomposition of balsa did not respond to
increased nitrogen concentration in microcosms. During the 52 days conditioning period in
the stream, balsa squares lost ca. 40% of their initial mass, which was higher than reported
in a previous experiment (ca. 25%; FERREIRA et al., 2006a). This difference could be attrib-
uted to the season during which decomposition trials were carried out; the present study was
carried out in late spring, while FERREIRA efal. (2006a) performed their studies in
autumn/winter when the water temperature was lower. Stimulation of litter decomposition
and microbial activity due to increased water temperature has been reported before (CHER-
Gul and PATTEE, 1990; CHAUVET and SUBERKROPP, 1998; FERREIRA et al. 2006b). The lack
of significant differences in mass loss between control and conditioned balsa squares,
although unexpected, could be explained by higher desegregation of fibers from wood after
being autoclaved than from non-autoclaved squares.
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Similarly, no significant differences were found in microbial oxygen consumption
between microcosms with contrasting nitrogen concentrations. This was also unexpected, as
several studies have reported stimulation of overall microbial activity in the presence of
increased dissolved nutrients (GULIS and SUBERKROPP, 2003; N1vodl et al., 2003; STELZER
et al., 2003; GULIS et al., 2004).

Balsa squares were colonized by only 6 species of aquatic hyphomycetes compared to
11 species recorded colonizing this substrate in a previous study at the same stream site (site
R; FERREIRA et al., 2006a). The difference was probably a result of balsa wood being incu-
bated in spring in the present study, while FERREIRA et al. (2006a) incubated it in two con-
secutive autumns with several sampling dates. The number of species sporulating in balsa
squares was similar between microcosms with contrasting nitrogen concentration, which is
not surprising since in the stream these species were present in a wide range of nitrogen con-
centrations (approx 100—1000 ug L™'; FERREIRA et al., 2006a). The percentage contribution
of each species to the total conidial production was similar in both treatments for all species,
which for Anguillosora crassa and Clavariopsis aquatica was surprising given previous field
results. C. aquatica dominated fungal communities under high nitrogen conditions
(983 £ 139 ug L"), while A. crassa dominated in the presence of low nitrogen concentra-
tions (82 + 7 ug L) (FERREIRA et al., 2006a). The failure of C. aquatica to dominate in the
high nitrogen microcosms could be explained by its preference for cooler water (BARLOCHER,
1992). Between days 8 and 12 of the microcosms experiment, the air conditioning system
failed to keep the room at 15 °C and the air temperature raised up to 21 °C for 2 days. In
this period, the percentage contribution of C. aquatica decreased from 14 to 3.5% in
enriched nitrogen microcosms and remained low thereafter.

The relevant finding in this experiment was that, among all the measured parameters, only
conidial production differed among treatments: conidial production by aquatic hyphomycetes
was higher in enriched nitrogen microcosms, as reported in other studies using wood (FER-
REIRA et al., 2006a) and leaves (SUBERKROPP, 1998; GuULIs and SUBERKROPP, 2003) as sub-
strates. The data suggest that changes in the environment are likely to cause biologi-
cal—physiological modifications at an individual level, before ecosystem functional para-
meters are altered.
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